http://www.xriadiat.com/ PROF: ATMANI NAJIB 1er BAC Sciences Expérimentales BIOF Série N°12 : Généralités sur les fonctions (La correction voir http://www.xriadiat.com) Exercice1: Déterminer l'ensemble de définition de la fonction f dans les cas suivants : 1) $f(x) = \frac{7x-3}{2x^2-3x+\frac{9}{6}}$ 2) $f(x) = \frac{|x-4|-|x-1|}{x^2+2|x|-3}$ 3) $f(x) = \sqrt{\frac{x+1}{x}}$ 4) $f(x) = \frac{\sqrt{2x^2-4x+6}}{2x-1}$ **Exercice 2**: Soit f la fonction numérique tel que : $f(x) = \frac{(3x+1)(2-x)}{4x^2-1}$ Etudier la position de la courbe de f par rapports à l'axe des abscisses Exercice3: La courbe ci-dessous représente la fonction f définie sur [-6,7] Répondre par lecture graphique : Quelles sont les images des réels -5, -3, 0 et 6 ? 2) Quels sont les antécédents de -1 et 0 ? 3) Résoudre graphiquement f(x) = 0 Quel est en fonction de m le nombre de solutions de : f(x) = m. Résoudre graphiquement f(x) ≺ 0 6) Résoudre graphiquement $f(x) \ge 2$ (D):y=m **Exercice4**: Soit g une fonction tel que : $g(x) = \frac{x}{x+1}$. 1) Déterminer D_{g} . Calculer le taux d'accroissement de fonction de g entre x₁ et x₂ tel que : x₁ ≠ x₂. 3) Etudier les variations de g sur les intervalles $I =]-\infty; -1[$ et $J =]-1; +\infty[$. Dresser son tableau de variation de f. PROF: ATMANI NAJIB PROF: ATMANI NAJIB 5) En déduire une comparaison des nombres : $\frac{\sqrt{2}}{\sqrt{2}-1}$ et $\frac{\sqrt{3}}{\sqrt{3}-1}$ **Exercice5**: On considère les fonctions : $f: x \to f(x) = \frac{1}{2}x^2$ et $g: x \to g(x) = \frac{1}{x+1}$. Le but de l'exercice est d'étudier la position relative de (C_f) et (C_g) les courbes représentatives des fonctions f et g 1) Déterminer l'ensemble de définition des fonctions f et g 2) Montrer que, pour tout nombre x réel : $x^3 + x^2 - 2 = (x-1)(x^2 + 2x + 2)$ 3) Montrer que pour tout nombre x réel : $x^2 + 2x + 2 = (x+1)^2 + 1$ et en déduire le signe de l'expression : $x^2 + 2x + 2$ A l'aide de ce qui précède, déterminer la position relative des courbes (C_f) et (C_g) **Exercice6**: Soit si dessous : (C_f) La courbe représentative d'une fonction f (C_f) Résoudre sur \mathbb{R} l'inéquation : $\frac{f(x)}{x^2-x-2} < 0$ **Exercice7**: Soit f une fonction numérique tel que : $f(x) = \frac{x^2 + x + 1}{x^2 + 1}$ Déterminer D_f 2) Démontrer que $\frac{1}{2}$ est la valeur minimale absolue de f 3) a) Démontrer que f est majorée par $\frac{3}{2}$ et est-ce que $\frac{3}{2}$ est une valeur maximale absolue de f? b) Que peut-on dire de la fonction f? **Exercice8**: Soit f une fonction numérique tel que : $f(x) = \frac{x \sin x}{x^2 + 1}$ Déterminer D_f http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 2 **PROF: ATMANI NAJIB** 2) Démontrer que f est minorée par $-\frac{1}{2}$ et majorée par $\frac{1}{2}$ **Exercice9**: Soit f une fonction numérique définie sur \mathbb{R} par : $f(x) = \frac{4x+3}{\sqrt{x^2+1}}$ 1) Montrer que : $\forall x \in \mathbb{R} (4x+3)^2 \le 25(x^2+1)$ 2) a) Déduire que : $|f(x)| \le 5$: $\forall x \in \mathbb{R}$ b) Que peut-on dire de la fonction f? **Exercice10**: Soit f une fonction numérique définie sur]2; + ∞ [par : $f(x) = \frac{\sqrt{x+2-2}}{x-2}$ Etudier le signe de f 2) a) Démontrer que f est majorée par $\frac{1}{4}$. b) Est ce que $\frac{1}{4}$ est une valeur maximale de f? Exercice11: Etudier la parité des fonctions suivantes définie par : 1) $f(x) = 3x^2 - 5$. 2) $f(x) = \tan x - 2\sin x$ 3) $f(x) = 2x^3 + x^2$ Exercice12: À partir de la courbe représentative de la fonction f dresser son tableau de variations

Exercice13: On considère une fonction f définie sur l'intervalle [-4;5] dont le tableau de variation est donné ci-dessous. 3 x Les affirmations suivantes sont-elles vraies ou fausses ? Justifier votre réponse. Affirmation 1: $f(4) \ge 0$ Affirmation 2 : La courbe représentant la fonction f coupe l'axe des abscisses en un seul point. **Exercice14**: Partie A : Soit f une fonction numérique tel que : $f(x) = x^2 + 2x - 2$ **PROF: ATMANI NAJIB** http://www.xriadiat.com/ 3 **PROF: ATMANI NAJIB** (C_f)Sa courbe représentative 1)Déterminer la nature de la courbe (C_f) de f et ces éléments caractéristiques et étudier les variations de f et dresser le Tableau de variations de f2) Tracer la courbe représentative (C_f) dans un repère orthonormé $(O; \vec{i}; \vec{j})$ Partie B : Soit g une fonction numérique tel que : $g(x) = \frac{2x+3}{x+1}$ (C_g) Sa courbe représentative 1) Déterminer D_{g} 2)Déterminer la nature de la courbe (C_g) de g et ces éléments caractéristiques et étudier les variations de g et dresser le Tableau de variations de g 3) Tracer la courbe représentative (C_g) dans le même repère $(O; \vec{i}, \vec{j})$ Déterminer graphiquement l'image des intervalles suivants par g :]-1,0]; [1;+∞[5) Résoudre graphiquement l'inéquation : f(x) < g(x)(On admet que (C_g) coupe (C_f) en 3 points d'abscisse : -3,2; -1,2; 1,2**Exercice15**: Soit les fonctions f et g tel que : $f(x) = x^2 - 2x + 3$ et g(x) = 2x + 1Déterminer : $g \circ f$ et $f \circ g$ **Exercice 16**: Soit les fonctions f et g définies par : $f(x) = \frac{x-1}{x+1}$ et $g(x) = \frac{x+2}{x-3}$ 1) Déterminer : D_f ; D_g ; $D_{g \circ f}$ 2) Déterminer : $(g \circ f)(x)$ Exercice17 : Exprimer les fonctions suivantes à l'aide de fonctions élémentaires : 1) $h_1(x) = \frac{1}{3x-1}$ 2) $h_2(x) = \sqrt{x+3}$ 3) $h_3(x) = 3\sqrt{x} + 4$ **Exercice18**: Soit g la fonction définie par : $g(x) = \frac{1}{2-x}$ et (C_g) La courbe représentative de g A)1) a) Déterminer la nature de (C_g) et ses éléments caractéristiques. b) Déterminer le tableau de variation de g c) Tracer la courbe (C_g) dans un repère $(O; \vec{i}; \vec{j})$

2) a) Résoudre dans \mathbb{R} les équations : g(x) = x et g(x) = 1 + x

b) Déterminer le signe de : m² + 4m c) Déterminer les valeurs de m ou la courbe (C_g) coupe la droite d'équation : y = x + m en deux points B)1) a) On considère la fonction f tel que : $f(x) = \frac{2x}{x^2 - x + 1}$ a) Calculer: f(x)-f(y): $\forall x, y$ http://www.xriadiat.com/ PROF: ATMANI NAJIB **PROF: ATMANI NAJIB** b) En déduire la monotonie de ∫ dans: [-1,1] et [1,+∞[c) Calculer: $f(x) + \frac{2}{3}$ puis en déduire son signe d) Montrer que : $\forall x \in \mathbb{R} -\frac{2}{3} \le f(x) \le 2$ 2) On considère la fonction h tel que : $h(x) = \frac{x^2 - x + 1}{2(x-1)^2}$ a) a) Déterminer D_h et vérifier que : $h(x) = (g \circ f)(x)$ $x \neq 0$ b) Étudier la monotonie de h dans: [-1,1] et [1,+∞] **Exercice19**: Soient f et g deux fonctions définies par : $f(x) = \sqrt{x+2}$ et $g(x) = \frac{x-3}{x+3}$ et (C_f) et (C_g) Les courbes représentatives de f et g Déterminer D_f et D_g Déterminer les tableaux de variations de f et g 3) a) Tracer les courbes (C_f) et (C_g) dans un repère $(O; \vec{i}; \vec{j})$ b) Résoudre graphiquement sur \mathbb{R} l'inéquation : $x(1-\sqrt{x+2})=3(1+\sqrt{x+2})$ 4) Soit h la fonction définie par : $h(x) = \frac{\sqrt{x+2}-3}{\sqrt{x+2}+3}$: $\forall x \in [-2; +\infty[$ a) Montrer que : h est majoré par 1 et que -1 c'est la valeur maximale absolue de h b) Étudier les variations de h sur −2;+∞ **Exercice20**: Soient f et g les deux fonctions définies par : $f(x) = \frac{5x-11}{4x-4}$ et $g(x) = x^2 - 2x - 1$ (C_f) et (C_g) Les courbes représentatives de f et g dans un repère $(o; \vec{i}; \vec{j})$ 1)a) Trouver les points d'intersection de la courbe (C_f) avec l'axe des abscisses b) Déterminer D, c) Trouver les points d'intersections de la courbe (C_s) avec l'axe des abscisses 2) a) Déterminer a; b et c tel que : $\forall x \in D_f$: $g(x) - f(x) = \frac{(x+1)(ax^2 + bx + c)}{4x - 4}$ b) Déterminer les points d'intersections de (C_f) et (C_g) 3)Tracer Les courbes représentatives (C_f) et (C_g) dans le même repère en précisant les points d'intersections 4)a) Résoudre graphiquement l'inéquation : g(x) > f(x)http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 5 **PROF: ATMANI NAJIB** b) Résoudre graphiquement l'inéquation : $f(x) \times g(x) \ge 0$ 5) Déterminer : $D_{g\circ f}$ et les variations de $g\circ f$ Soit la fonction définie par : h(x) = |g(x)| Tracer La courbes représentatives (C_h) de h dans le même repère $(0; \vec{i}; \vec{j})$ (avec une autre couleur) **Exercice21**: soit f une fonction définie par : $f(x) = \frac{\sin x}{1 - \cos x}$ Déterminer D_f l'ensemble de définition de f Etudier la parité de f 3) Vérifier que 2π est une période pour la fonction f En déduire un domaine d'étude de f Déterminer les points d'intersections de la courbe (C,) avec l'axe des abscisses 6) Résoudre dans $[0,2\pi[$ l'inéquation : $f(x) \ge 0$ 7) tracer la courbe (C_r) sur l'intervalle $[-3\pi; 3\pi]$ **Exercice22**: Considérons la fonction f périodique de période 2 tel que : f(x) = x - 1 $\forall x \in [0,2]$ 1)Tracer la représentation graphique de la fonction sur [-4;6] dans un repère $(0;\vec{i};\vec{j})$ 2) Calculer: f(9); f(-8,5); f(2025)3) Donner l'expression de : f(x) sur les intervalles : $I_k = \lceil 2k; 2(k+1) \rceil$ $k \in \mathbb{Z}$ **Exercice23:** Considérons la fonction f définie par : $f(x) = x \times E\left(\frac{1}{x}\right)$

1) Calculer: f(2); f(-2025); $f(-\frac{4}{9})$ 2) Déterminer : D_f 3) a) Montrer que : $\forall x \in]0; +\infty[$: $1-x < f(x) \le 1$ b) Montrer que : $\forall x \in]-\infty; 0[$: $1 \le f(x) < 1-x$ c) Donner une valeur simple de f(x) sur $]1;+\infty[$ et sur $]-\infty;-1[$ **Exercice24**: Soit f une fonction numérique définie par : $f(x) = (x - E(x))^2$ Montrer que f est bornée a) Vérifier que 1 est une période pour la fonction f b) En déduire le domaine d'étude de f 3) a) Donner une expression simple de : f(x) sur l'intervalle : $I_1 = [0;1]$ b) Tracer la représentation graphique de la fonction sur [-3;3] dans un repère (0;i,j)4)Soit g la fonction numérique définie par : $g(x) = \frac{1}{(x - E(x))^2}$ http://www.xriadiat.com/ **PROF: ATMANI NAJIB** 6 **PROF: ATMANI NAJIB** a) Montrer que : $\forall x \in \mathbb{R}$: $E(x) = x \Leftrightarrow x \in \mathbb{Z}$ b) En déduire le domaine d'étude de g c) Donner le Tableau de variation de g sur :]-1;1 d)Tracer la représentation graphique de la fonction g sur : [−3;3[C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien